A simple construction of genus fields of abelian number fields

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

construction of vector fields with positive lyapunov exponents

in this thesis our aim is to construct vector field in r3 for which the corresponding one-dimensional maps have certain discontinuities. two kinds of vector fields are considered, the first the lorenz vector field, and the second originally introced here. the latter have chaotic behavior and motivate a class of one-parameter families of maps which have positive lyapunov exponents for an open in...

15 صفحه اول

control of the optical properties of nanoparticles by laser fields

در این پایان نامه، درهمتنیدگی بین یک سیستم نقطه کوانتومی دوگانه(مولکول نقطه کوانتومی) و میدان مورد مطالعه قرار گرفته است. از آنتروپی ون نیومن به عنوان ابزاری برای بررسی درهمتنیدگی بین اتم و میدان استفاده شده و تاثیر پارامترهای مختلف، نظیر تونل زنی(که توسط تغییر ولتاژ ایجاد می شود)، شدت میدان و نسبت دو گسیل خودبخودی بر رفتار درجه درهمتنیدگی سیستم بررسی شده اشت.با تغییر هر یک از این پارامترها، در...

15 صفحه اول

Computing automorphisms of abelian number fields

Let L = Q(α) be an abelian number field of degree n. Most algorithms for computing the lattice of subfields of L require the computation of all the conjugates of α. This is usually achieved by factoring the minimal polynomial mα(x) of α over L. In practice, the existing algorithms for factoring polynomials over algebraic number fields can handle only problems of moderate size. In this paper we ...

متن کامل

Class Numbers of Imaginary Abelian Number Fields

Let N be an imaginary abelian number field. We know that hN , the relative class number of N , goes to infinity as fN , the conductor of N , approaches infinity, so that there are only finitely many imaginary abelian number fields with given relative class number. First of all, we have found all imaginary abelian number fields with relative class number one: there are exactly 302 such fields. I...

متن کامل

Non-Abelian L-Functions For Number Fields

In this paper we introduce non-abelian zeta functions and more generally non-abelian L-functions for number fields, based on geo-arithmetical cohomology, geo-arithmetical truncation and Langlands’ theory of Eisenstein series. More precisely, in Chapter I, we start with a new yet natural geo-arithmetical cohomology and a geo-arithmetical stability in order to define genuine non-abelian zeta func...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1985

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1985-0787879-0